Adonis

Adonis

This project is a possible vision of the future in the year 2050. Pollution is getting worse and worse, and the human body now takes damage simply from being outside, as a result of intense air pollution, climate degradation, and severe UV light. Human wealth is focused on solving surface level problems as a result of climate catastrophes instead of the root problem. People try to ignore their surroundings and attempt to live in blissful ignorance. This project is a reflection of that ignorance, and its purpose is to provoke people to think about their behavior and the future they are creating.


Our project revealed a future product that can be used to clean your lungs, eyes and skin. It is an everyday product and is used every day like a toothbrush
It consists out of the following:
● Main Device
● three attachements, that can be put on the main Device
● Dock, that is used for charging and refilling


The main device has a dip to put the attachements in and 3 LED lights to show current battery
status. Only one button is needed to start and stop the cleaning process. A speaker gives
notification sounds. In the bottom right image our attachments can be seen in more detail, and are
5cm by 5cm. The left one is for the lungs, it's shape is meant to be comfortable in the user's mouth
and has holes for inhaling. The middle one is for skin, with an accordian shape for easy
manoeuvrability across different parts of the body, and features a laser and holes for spray. The
right one is for the eyes, it forces your eyes open during the cleaning process.


The eye-attachment works as follow:
Hold the attachment up to your eye and press the start
button. The expansion ring moves your eyelids apart, and
the pressure gauge reaches out and touches your eye to
measure and collect data. Then your eye is smoothed to
prevent conjunctivitis. You will feel a slight scratching on
the surface of your eyes during this part. A UV light
protective spray is applied, and once you hear the beep,
you may remove the device.


The lung-attachment works as follow:
Put the attachment in your mouth and press the start
button to start the cleaning process. You inhale once,
deeply, through your mouth so that the nano-rope can
begin descending and dividing into your alveoli. While
the device removes any unhealthy substances and
sprays an adhesive spray to make the next cleaning
easier, you must breath calmy during the whole process.
Once it is done, it will start to remove itself from your
lungs automatically. Once you hear the beep, you may
remove the device.


The skin-attachment works as follow:
Press start button to begin, and run the device over your
skin. If the device has found a part of your skin that
requires attention, the voice interface will tell you to hold
the device still in that region and press the start button.
The attachment will then begin with tissu
nanotransfection. Ignore the pain as much as possible. A
healing spray is applied to the wound to help it recover.
Once you are satisfied, you may press the button to end
the process.


Here you see the Dock.
The dock is the base for the main device and its
attachments when they are not in use. It charges
the main device and cleans and refills the
attachments. From time to time you have to
manually refill and clean out the drawer at the
front of the dock.


To make the final prototype work, we used an Arduino with a few other components. The main
device has a speaker for sound and a LED charging signals, both of which are connected and
controlled by the onboard Arduino. To enable the sound from the speaker, a SD card was
required, as it sends the sound files to the speaker. The LED is simply connected to the arduino,
and is turned on all the time when the device is active. A magnet is also built inside underneath
the dip, in order to connect the attachments to it. As a result the attachments also feature a
magnet inside of them.


To make the dock realistic, we used 3 LED rings
(each one with 24 individual LEDs), and another
Arduino to control the simulation of the organ
health percentage. This percentage can be
changed via remote control, which sends a
message from a device we control to an IRreceiver
that is connected to the Arduino in the
dock. We decided to add this feature to enhance
our exhibition by making it more realistic and
more of a spectacle.


Since the 3D models we used to make the renders
were made in Rhino, it was very easy to export
them into 3D printing files. We used the Ultimaker
2+ and 3 to print our models in white. We then
proceeded to refine them by sanding all the parts
and spraying them with white paint. The top part
was painted with a glossy spraypaint to make it
look more elegant and hygienic.


Following the final storyboard we made, we started
filming the video at our university with the help of a
proffesional by the name of Max Walter. We began
by filming still shots of the product for b-roll, then
the product being used by one of our group
members, and finally the interview style shots of
another group member. We were very happy with
the footage we received as it was all high quality
and consistent in its style.


To show the user how the product truly works, in
detail, we printed a manual that shows the steps
involved in using the product and everything
that isn't communicated with our advertisement.
The manual is illustrated for added visual
reference, and written in German, English and
Chinese. We felt that a manual was the perfect
addition for our exhibition.